Lifeline Systems

Craig A. Davis, C A Davis Engineering
Los Angeles Department and Water & Power (retired)

Joint Academia-Industry NHERI Workshop
NHERI@UC San Diego

September 21-22, 2020
University of California, San Diego
• Purpose:
 • identify and formulate grand challenge research needs to improve seismic design codes and standards, foster academia-industry collaborations, and map the future directions of research using the newly upgraded 6-DOF LHPOST

• Role:
 • present views and vision to fill the knowledge gaps in earthquake engineering
Outline

• Lifeline Systems Overview
• Current Challenges
• Resilience
• Direction in developments
• Some research needs applicable to 6-DOF LHPOST
• Conclusions
Lifeline Infrastructure Systems

• **Infrastructure Systems** = the physical and organizational structures and facilities needed for the operation of a society or enterprise

• Lifeline Infrastructure Systems:
 - Water
 - Wastewater
 - Storm Water/Inundation Protection
 - Electric Power
 - Communication
 - Gas and Liquid Fuels
 - Transportation
 - Solid Waste

• **Socio-Technical Systems**: Lifeline systems include the physical infrastructure and the organizations that manage them
Lifeline Infrastructure Systems

• Large geographically distributed systems
• Made of numerous interlinked specialized components
• Interdependent
• Consist of a variety of subsystems
 • May have separate owners and operators
 • All must coordinate to provide services to end users
Current Lifeline System Challenges

- Limited codes and standards governing seismic design of lifeline systems
 - Some well developed while non-existent for other systems & components
- Inconsistent approaches and criteria
- Wide range of regulations (from none to multi-jurisdictional)
- Need to create resilient lifeline systems consistent with community resilience goals
 - Community resilience goals are limited to non-existent in most cities
 - Lifeline systems need to develop resilience on their own, but have limited guidance
- Disparate recovery-based goals across lifeline systems (if they exist)
- NEHRP Functional Recovery
Lifeline System Resilience

• Multi-Dimensional
• Robustness, Redundancy, Rapidity, Resourcefulness (Bruneau et al., 2003)
• Physical testing mainly deals with Robustness, sometimes Redundancy, and may include some aspects of Rapidity and Resourcefulness.
• Physical testing is important to help create resilient lifeline systems
Current Momentum in Lifeline Earthquake Engineering

• Framework for recovery-based objectives
• Develop and improve existing codes, standards, and guidelines
• Establish design levels for which systems can meet the recovery-based objectives (i.e., ability to provide basic services in timely manner)
• Establish design levels for each component to ensure the system can cost-effectively meet the recovery-based objectives.
• Define how to meet the objectives by:
 • Designing new components, subsystems, and systems, and
 • Modifying existing components, subsystems, and systems
Lifeline System Research Needs

Large multi-degree of freedom shake table offers many opportunities to undertake research for improving the seismic design of lifeline systems
Specialized Equipment (some examples)

- Wind turbines subjected to multi-directional shaking
- Communication Towers
- Pumps/turbines
- Large valves in piping systems (inertial shaking + axial wave propagation)
Interaction of Multiple System Components

- Modeling portions of stations, refineries, networks
 - Electric Power receiving and distribution stations
 - Electric power and communication poles
 - Effects of swaying cables, resulting forces, touching and causing electrical faults
- Above and below ground interconnected piping systems
 - Using common fittings for oil, gas, and water networks
Interaction of Multiple System Components

• Include effects of shaking and differential ground movements
 • Small ground displacements can have large impacts on interconnected components in electric power stations, refineries, treatment systems, etc.
 • Incorporate ability to slightly offset some components representing permanent ground movement using soil-displacement or another platform on the shake table.

Gravity wall structure displaced
Resulted in ~3” settlement, ~6” horiz. movement
Damaged equipment & connections

Gravity retaining structure
Lushan, China 2013

Electric Power substation

Displacement cracks
Fault Rupture

• Use table to simulate fault rupture
 • Confirm behavior of large diameter pipelines vs. smaller pipelines tested in the Cornell box
 • Behavior of collocated lifelines in a corridor crossed by a fault (e.g., SAF @ Cajon pass, & other locations)
 • Fault rupture through different types of tunnel liners
 • How rupture propagates upward through weaker soils, including liquefied soils, and effects on shallow buried utilities

Example tunnel liners
Landslides

• Use soil box to simulate landslides
• Simulate landslides and pipe crossings,
 • axially,
 • longitudinally,
 • obliquely
• Measure pipe strains and effects of both landslide margins.
• Compare to idea of fault rupture simulates margin of landslides.
Liquefaction

- Buckling of large diameter pipelines embedded in liquefied soils
- Mechanics of uplift/floatation of buried pipelines & other structures
 - Methods of preventing
- Effects of lateral spreading on buried pipe network
 (distribution/collection network) & effects on appurtenances and connections

Lateral Spreading

![Image of pipeline subject to lateral spreading](image_url)

Courtesy JWRC
Wave Propagation

• Simulate Rayleigh waves and measure ground strains.
 • Need to confirm R-wave strains on buried pipelines.

• Long linear lines – If table can simulate differential movement at each support
 • Multi-supported pipelines: investigate behavior of different types of supports
 • Piers w/ simple foundation on soil (allowed to rock) having different connections to pipe
 • Piers with deep foundations semi-rigidly anchored to ground with different connections to pipe
 • Pipe connections to piers:
 • Pipe resting in saddle
 • Pipe in saddle with ring straps
 • Address wave propagation w/ spacing of piers moving different at each location.
Ring girder on pile supported pier, damaged from lateral spreading 1971 & 1994

LA Aqueduct on concrete saddles bearing on soil, no ring girders, intense shaking 1971 & 1994
No failure
Water Sloshing

• Model impacts of sloshing on specialized treatment systems (water & wastewater)
 • Baffles
 • Clarifiers

2011 Mw9.0 Great East Japan Earthquake (ASCE, 2017)
Water Pipelines

• Generation of seismic-induced surge pressures
• Mechanisms & effects
Buried Box Structures

• 3D modeling of buried concrete box structures.
 • Common structures in lifeline systems.

• Account for
 • variation in Length, Width, and Height changing stiffnesses,
 • lateral force resisting system changing lateral deflections along wall length
 • variation in soil pressures along all sides.
 • effects of variation in burial depth.

• May be best coupled with centrifuge testing for efficiency.
Subway Stations

• Multi-level subway stations are complex soil-structure interaction problems
• Subway station-tunnel interface
Conclusions

• Lifelines are large complicated systems made of numerous specialized components
• There are limited codes, standards, and guidelines dictating their seismic design
• There is a need to create/improve standards incorporating recovery-based design consistent across all lifeline systems
• Several potential research ideas have been presented
• These are just some of many testing concepts which may be applied to lifeline systems