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Two complementary projects@LHPOST

1) System-Level Building Testing: CFS-HUD
2) Component-Level Testing: CFS-NHERI (Wall-Line
Test Phase)

My Hopeful Outcome (in this 12 min discussion):
Demonstrate the success of industry-academe
collaborations
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1) CFS-HUD: Earthquake and Post-Earthquake Fire
Testing of a Mid-Rise CFS-Framed Building

/D PR PIs: Tara Hutchinson, Gil Hegemeir, Brian Meacham
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CFS-HUD: Building Conceptu

- 6-story (64" tall) CFS building, representative of

Continuous |
rod tie-down

- Structural system: system
1) CFS-panelized shearwalls (gyp-bonded steel sheath

* Long interior corridor SWs with door openings

eral load (exterior walls short)
i ted) torsional loads
1 bonded shearwalls; tie-down roads and

forces

Joists
1000S200-54
@ 610 mm o.c




Extreme Events (test) Protocol

Phases of testing:
1) White noise & tire shock tests

2) Base shaking (pre-fire)

- White noise intermittent with increasing suite of scaled |
earthquake motions §

- Three active earthquake test days, one day between
each for physical inspection, test data analysis,
preparation for next day

3) Live fire tests
- 2 floors of live fire tests
4) Aftershock+extreme earthquake tests (post-fire)
- Post-thermal base shaking earthquake sequence




CFS-HUD: Highlights of Physical Damage &
Measured Response



Evolution of building dynamic characteristics
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Global SW View - EQ9 (post-fire NF)

UCSan Diego

Jacobs School of Engineering

Earthquake & Post-Earthquake Fire
Performance of Mid-Rise Light-Gauge
Cold-Formed Steel Framed Buildings

Compilation of 2nd Floor Level (Interior Views)
During Final Near-Fault Earthquake Simulation

Post-Fire Tests




Total Roof Residual 10" = 1.4(%

Level 2 |
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What did we NOT learn? What questions remain?

- How would this building have performed with exterior finishes?

- It was already much stiffer than anticipated, at what demand level would the
finishes sufficiently disengage and lack contribution to stiffness and seismic inertial

load?
- How does this (gyp-bonded steel sheathed CFS-framed wall system) compare
with a generic structural shearwall, in a system setting?

- The stiffness and strength contribution of gyp-bonded steel sheathing is
(potentially) a positive aspect; though not yet mainstream in practice

- How would the performance of the building compare if the diaphragm had been
flexible?

- Physical modeling necessitated the augmentation of mass loading with steel plates
— this, combined with the drop-in prefabricated CFS-steel sheathed floor segments
resulted in a very stiff floor diaphragm
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What did we NOT learn? What questions remain?

- What is the contribution of the non-designated load bearing
systems?
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2) CFS-NHERI: Shake table and Quasi-

static Wall-line Tests

<>

ClarkDietrich. Pls: Tara Hutchinson, Ben Schafer & Kara Peterman
Amanpreet Singh & Dr. Xiang Wang (UCSD Researchers)
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CFS-NHERI Archetype Buildings

* Complete CFS system walls - - _ i ’ =

(gravity and steel sheet shear walls)

* Designed 4 and 10 story buildings o > ARy .
* Selected shear wall details based on building archetype . i s | ® o {11
>4 long x 9 tall - AT \UN 4 [T ' 7 |
»Single side steel sheet: 30 mil ROk T
» Chord Stud pack: 6005250-97 UL il jediil LT
> Gravity Stud: 6005250-68 i Al il
> Tie Rod: ¢11/5" =55 > < 2 :
» Edge spacing: 2” /12" o.c., #12 screws = - P s
> Fully blocked I | I | I : T
* Reflect typical shear wall at base of the 4-story buildin Sl<ooouusz
or appro}gi)mately mid—height?the 10-story guilding ° <><0><><><> :

Reference: Torabian, S., Nia, Z. S., & Schafer, B. W. (2016). An Archetype Mid-Rise Building for Novel Complete Cold-Formed Steel Buildings.
14 In Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures, Baltimore, MD.
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Wall-Line Tests: Experiment Objectives UCSan Diego,
VI

* Characterize dynamic performance of Cold-
Formed Steel framed walls subjected to in-line
earthquake motions of increasing intensity

* Understand the effect of finishes and effects of
openings on wall behavior

* Compare the behavior of Type I and Type II walls

* Compare performance of walls with steel tension
tie-rods assembly versus hold-down systems

* Compare the behavior of symmetrical and
unsymmetrical walls

* Examine lateral load sharing between shear
walls placed in-line with gravity walls
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Test Setup: Shake Table Tests
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CFS-NHERI
IN-LINE WALL SHAKE TABLE TESTS

UAYV FLYOVER: PRE-TEST
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CFS-NHERI: Highlights of Physical Damage &
Measured Response of Select Wall-Line
Components
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SGGS-1 (Baseline Specimen) - Design EQ
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CFS-NHERI
IN-LINE WALL SHAKE TABLE TESTS

SGGS-1 BASELINE SPECIMEN
1994 NORTHRIDGE (CANOGA PARK)
SCALED TO DESIGN PERFORMANCE LEVEL
OCTOBER 29, 2018
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Force—D1sp1acement Response: SGGS-1 (Baseline specimen)
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IN-LINE WALL SHAKE TABLE 1ESTS

SGGG-T ASYMMETRIC SPECIMEN
1994 NORTHRIDGE (CANOGA PARK)
SCALED TO ABOVE DESIGN PERFORMANCE LEVEL
DECEMBER 10, 2018
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Symmetric vs Unsymmetric Wall Systems

Drift [cm]
-768 -3.84 000 384 768 1152 1536

I I I 1 1 I 1
Drift [in]
0.00 1.51

3.02 454 6.05

Seismic Coefficient (V/W) [unitless]

Drlft Ratlo [%

[klp]
SGGS-1 36.0
21 SGGG-1 18.6 (148.3%)

Drift, oy, .
[in] (%)

2.11 (1.95%)
1.73 (1.60%)

138.4

1 125.6

1112.8

110.0

1 1-12.8

1-25.6

--38.4

Force [Kip]

1170.8

1113.9

156.9

10.0

1-56.9

1-113.9

--170.8

Force [kKN]

Seismic Coefficient (V/W)

-08 ¢t

-16 ¢

-2.4

24

+ve drift

16

08}

00}

-2.8

-14 00 14 28 42 56

Drift Ratio [%]

Initial Stiffness?, Secant Stiffness, [kip/in]

k, [kip/in]

66.2

30.2 (154.4%)

k* sec k-sec
17.1 28.4
10.8 (136.9%) 13.3



Type [ vs Type Il Wall Systems
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Concluding Remarks

- Academic researchers sometimes come up with wild ideas,
industry can help bring us back to the realities of construction

practice

» Industry collaborations are essential in these large-scale testing
endeavors

- Together industry-academic research teams promise to make real
change in understanding & improving the performance of
structural (& non-structural) systems during earthquake events
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